Synthesis and molecular structures of a pair of tris(imidazolyl)phosphine cobalt–perchlorate complexes, $\{[Pim^{Pr_2}]Co(OClO_3)\}$ -[ClO₄] and $\{[Pim^{Pr_2}]Co(OH_2)(HOMe)(OClO_3)\}$ [ClO₄]

Clare Kimblin, Brian M. Bridgewater, David G. Churchill and Gerard Parkin*

Department of Chemistry, Columbia University, New York, New York 10027, USA

Received 24th January 2000, Accepted 18th April 2000 Published on the Web 8th June 2000

The cobalt–perchlorate complexes, { $[Pim^{Pr'_2}]Co(OClO_3)$ }(ClO_4) and { $[Pim^{Pr'_2}]Co(OH_2)(HOMe)(OClO_3)$ }(ClO_4), have been synthesized *via* the reaction of tris[2-(1,4-diisopropylimidazolyl)]phosphine [Pim^{Pr'_2}] with Co(ClO_4)_2·6H_2O; the isolation of these species, as opposed to a hydroxide derivative { $[Pim^{Pr'_2}]CoOH$ }⁺, demonstrates the important role that steric interactions play in generating synthetic analogues for metal-substituted carbonic anhydrases.

Introduction

Our previous studies have described the use of the sterically tris[2-(1-isopropyl-4-tert-butylimidazolyl)]phosdemanding phine ligand $[Pim^{Pr^i,Bu^i}]^1$ to prepare $\{[Pim^{Pr^i,Bu^i}]ZnOH\}$ -(ClO₄). As the first structurally characterized monomeric zinc hydroxide complex supported by imidazole functionalities, $\{[Pim^{Pr',Bu'}]ZnOH\}^+$ is an excellent structural model for the active site of carbonic anhydrase.² An important attribute of the [Pim^{Pr',Bu'}] ligand that permits isolation of a fourcoordinate zinc hydroxide complex is the sterically protective environment that is provided by the three tert-butyl substituents. In this paper, we describe related cobalt chemistry using the less sterically demanding ligand, [Pim^{Pri}₂],³ which provides an indication of the complexities that may arise in modeling metalloenzymes when steric constraints do not impose an appropriate coordination environment.

Results and discussion

In addition to ${[Pim^{Pr',Bu'}]ZnOH}^+$,² structurally characterized mononuclear tetrahedral zinc hydroxide complexes have also been obtained using bulky tris(pyrazolyl)borate ligands, *e.g.* $[Tp^{Bu^{t},Me}]ZnOH^{4}$ and $[Tp^{Ar,Me}]ZnOH$ $(Ar = p-C_{6}H_{4}Pr^{i}).^{5}$ Sterically demanding tris(pyrazolyl)borate ligands have also allowed isolation of terminal hydroxide complexes of other metals, such as the iron and cobalt complexes $[Tp^{Bu^{t},Pr^{t}}]FeOH^{6}$ and $[Tp^{Bu',Mc}]CoOH.^7$ However, reducing the steric demands of the $[Tp^{RR'}]$ ligand results in the formation of dinuclear complexes with bridging hydroxide ligands. Thus, dinuclear complexes, such as $\{[Tp^{Pr_2}]Fe(\mu-OH)\}_2$ and $\{[Tp^{Pr_2}]Co(\mu-OH)\}_2$, are obtained if the 3-pyrazolyl substituent is Prⁱ rather than But.^{8,9} The coordination chemistry of cobalt supported by [NNN] tripodal imidazolyl ligands is of particular interest since cobalt is the only other metal which has been substituted for Zn in carbonic anhydrase such that significant activity is retained.¹⁰ For this reason, it is pertinent to explore the coordination chemistry of cobalt using the di-isopropyl substituted tris(imidazolyl)phosphine, [Pim^{Pri}₂],³ a ligand which is structurally related to the aforementioned tris(pyrazolyl)hydroborato ligand [Tp^{Prⁱ2}].

The tris(imidazolyl)phosonino $Igina [Pip^{Pr_2}]$ reacts with Co(ClO₄)₂· 6H₂O in methanol to yield the six-coordinate aqua-methanolperchlorate complex {[Pim^{Pr_2}]Co(OH₂)(HOMe)(OClO₃)}-(ClO₄) (Scheme 1), the molecular structure of which has been determined by X-ray diffraction (Fig. 1). The nature of {[Pim^{Pr_2}]Co(OH₂)(HOMe)(OClO₃)}⁺ differs considerably from

Scheme 1

 $\{ [Pim^{Pr',Bu'}]ZnOH \}^{+,2} \text{ the product of the reaction between } [Pim^{Pr',Bu'}] \text{ and } Zn(ClO_4)_2 \cdot 6H_2O \text{ in methanol. For example, two notable differences are that the cobalt complex is octahedral and contains an aqua rather than hydroxide ligand. In this regard, <math>\{ [Pim^{Pr'_2}]Co(OH_2)(HOMe)(OClO_3) \}^+ \text{ bears a closer resemblance to the cadmium aqua complex } \{ [Pim^{Pr',Bu'}] \cdot Cd(OH_2)(OClO_3) \}^+ \text{ which is obtained from the reaction of } [Pim^{Pr',Bu'}] \text{ with } Cd(ClO_4)_2 \cdot 6H_2O,^{11} \text{ the only significant difference being that the cadmium center does not bind an additional methanol ligand. It is also worth noting that the coordinated methanol in <math>\{ [Pim^{Pr'_2}]Co(OH_2)(HOMe)(OClO_3) \}^+ \text{ participates in a hydrogen bond interaction with an additional molecule of methanol } [d(O \cdots O) = 2.62 \text{ Å}].^{12}$

Interestingly, the methanol and water ligands in $\{[Pim^{Pr'_3}]-Co(OH_2)(HOMe)(OClO_3)\}^+$ are not bound strongly to cobalt, such that removal of the volatile components and crystallization from CHCl₃ yields the blue "tetrahedral" perchlorate

DOI: 10.1039/b002894k

J. Chem. Soc., Dalton Trans., 2000, 2191–2194 2191

Table 1	Comparison	of Co-	ΟH ₂ , (Co–O(H))Me, and	Co-OClO ₃	bond	lengths
---------	------------	--------	---------------------	---------	----------	----------------------	------	---------

	d [Co–OH ₂]/Å	d[Co–O(H)Me]/Å	d[Co–OClO ₃]/Å	Reference
$ \{ [Pim^{Pr!}]Co(OClO_3) \}^+ \\ \{ [Pim^{Pr!}]Co(OH_2)(HOMe)(OClO_3) \}^+ \\ trans- \{ [N_4]Co(OH_2)(HOMe) \}^{2a} \\ trans- \{ [N_3O_2]Co(OH_2)(HOMe) \}^{2+a} \\ trans- \{ [N_4O]Co(OH_2)(HOMe) \}^{2+a} \\ trans- \{ [N_2O_2]Co(OH_2)(OClO_3) \}^{2+a} \\ trans- [N_4]Co(OClO_3)_{2}^{a} \\ CSD mean [range] $	2.083(2) 2.22(2) 2.119(4) 2.183(8) 2.115(4) 2.08 [0.43]	2.095(2) 2.19(2) 2.103(4) 2.209(9) 	1.999(3) 2.266(2) 2.220(4) 2.21(1), 2.32(1) 2.32 [0.25]	This work This work 21 <i>a</i> 21 <i>b</i> 21 <i>c</i> <i>b</i> 15 <i>a</i>

^a For brevity, only the coordinating atoms of the supporting ligands are indicated. ^b D. Luneau, F. M. Romero and R. Ziesel, *Inorg. Chem.*, 1998, 37, 5078.

Fig. 1 Molecular structure of the cation $\{[Pim^{Pr_2}]Co(OH_2)(HOMe)-(OCIO_3)\}^+$. Selected bond lengths (Å): Co-O(1) 2.083(2), Co-O(2) 2.095(2), Co-O(11) 2.266(2), Co-N(12) 2.133(2), Co-N(22) 2.139(2), Co-N(32) 2.155(2), O(2) \cdots O(3) 2.62.

Fig. 2 Molecular structure of the cation $\{[Pim^{Pr'_3}]Co(OCIO_3)\}^+$. Selected bond lengths (Å): Co–O(11) 1.999(3), Co···O(14) 2.50, Co–N(12) 2.024(3), Co–N(22) 2.033(3), Co–N(32) 2.023(3).

complex {[Pim^{Pr_2}]Co(OClO₃)}[ClO₄] which is devoid of any additional ligands.¹³ An X-ray diffraction study (Fig. 2) reveals that the "tetrahedral" cobalt center in {[Pim^{Pr_2}]Co(OClO₃)}⁺ does interact with a second oxygen atom of the perchlorate ligand, but indicates that the interaction is very long [2.50 Å]

2192 J. Chem. Soc., Dalton Trans., 2000, 2191–2194

compared to the primary interaction [1.999(3) Å]. The ligand is, therefore, better described as adopting a unidentate rather than bidentate coordination mode.^{14,15} The latter observation is in accord with the notion that perchlorate is a weakly coordinating ligand.^{16,17} For example, the more strongly bonding nitrate ligand in { $[Pim^{Pr',Bu'}]Co(NO_3)$ }⁺ binds in a bidentate rather than unidentate manner, in spite of the fact that it is a derivative of the more sterically demanding $[Pim^{Pr',Bu'}]$ ligand.^{18,19} Interestingly, the Co–OClO₃ bond length in { $[Pim^{Pr'_2}]Co(OClO_3)$ }⁺ is not only significantly shorter than that in six-coordinate { $[Pim^{Pr'_2}]Co(OH_2)(HOMe)(OClO_3)$ }⁺ [2.266(2) Å], but is also substantially shorter than for any other complex listed in the Cambridge Structural Database (CSD),²⁰ as summarized in Table 1.

There are no examples of structurally characterized octahedral cobalt complexes with an aqua-methanol-perchlorate combination of ligands listed in the CSD to provide a comparison with {[Pim^{Pri}₂]Co(OH₂)(HOMe)(OClO₃)}⁺. Aquamethanol complexes are, nevertheless, known (Table 1),²¹ and such species also exist with perchlorate as a counterion,^{21a,b} but the latter does not interact significantly with the cobalt center. The molecular structure of $\{[Pim^{Pr_2}]Co(OH_2)-$ (HOMe)(OClO₃)}⁺, therefore, presents a unique opportunity to compare the three Co-O bond lengths, i.e. Co-OH₂, Co-O(H)Me, and Co-OClO₃, in a single compound (Table 1). Examination of Table 1 indicates that the Co-OClO₃ bond is the longest of the three, and that it is also 0.27 Å longer than the Co–OClO₃ bond in $\{[Pim^{Pr_2}]Co(OClO_3)\}^+$. Evidently, the Co-OClO₃ interaction must be regarded as rather pliable. In this regard, the Cd-OClO₃ [2.203(8) Å] and Cd-OH₂ [2.297(9) Å] bond lengths in the related cadmium complex ${[Pim^{Pr',Bu'}]Cd(OH_2)(OClO_3)}^+$ exhibit the opposite trend to that in { $[Pim^{Pr_2}]Co(OH_2)(HOMe)(OClO_3)$ }⁺, with the Cd–OClO₃ bond being shorter than the Cd–OH₂ bond. It is also noteworthy that, despite the three different Co-O bond lengths in $\{[Pim^{Pr'_2}]Co(OH_2)(HOMe)(OClO_3)\}^+$, the three Co–N bond lengths are very similar, indicating that there are no significant differences in the trans influences of H₂O, MeOH and [OClO₃]⁻ in this system.

Experimental section

General considerations

All manipulations were performed using a combination of glovebox, high-vacuum or Schlenk techniques.²² Solvents were purified and degassed by standard procedures. NMR spectra were recorded on a Bruker Avance 400 DRX spectrometer. Mass spectra were obtained on a Micromass Quadrupole-Time-of-Flight mass spectrometer using an electrospray ion source. [Pim^{Pr'}₂] was prepared by the literature method.³

Synthesis of $\{[Pim^{Pr_2}]Co(OH_2)(HOMe)(OCIO_3)\}[CIO_4]$ and $\{[Pim^{Pr_2}]Co(OCIO_3)\}[CIO_4]$

[Pim^{Pr'₂}] (160 mg, 0.33 mmol) was added to a stirred suspension

Table 2 Crystal, intensity collection and refinement data

	$\{[Pim^{Pr^{t_2}}]Co(OH_2(HOMe)_2(OClO_3))\}[ClO_4]$	$\{[Pim^{Pr'_2}]Co(OClO_3)\}[ClO_4]$
Symmetry Formula Formula weight Space group a/Å b/Å c/Å a/° $\beta/°$ $\gamma/°$ $V/Å^3$ Z Temperature/K Radiation $(\lambda/Å)$ $\rho(calcd.)/g cm^{-3}$ $\mu(Mo-K\alpha)/mm^{-1}$ $\theta_{max}/°$ No. of data No. of parameters R_1^{a}	$ \{ [Pim^{Pr!}]Co(OH_2(HOMe)_2(OClO_3) \} [ClO_4] $ Monoclinic $C_{29}H_{55}Cl_2N_6O_{11}PCo$ 824.59 $P2_1/n$ (no. 14) 12.6185(8) 18.2452(11) 17.6528(10) 90 90.537(1) 90 4064.0(4) 4 233 0.71073 1.348 0.651 28.3 9302 522 0.0460	$ \{ [Pim^{Pr_{3}}]Co(OClO_{3}) \} [ClO_{4}] $ Monoclinic $ C_{29}H_{47}Cl_{8}N_{6}O_{8}PCo$ 981.23 $ P2_{1}/c \text{ (no. 14)}$ 15.3832(11) 16.8991(12) 17.8228(11) 90 100.154(1) 90 4560.7(5) 4 238 0.71073 1.429 0.928 28.3 10147 490 0.0624
wR_2^a GOF	0.1222 1.094	0.1819 1.057

of Co(ClO₄)₂·6H₂O (121 mg, 0.33 mmol) in methanol (ca. 5 mL) giving a purple mixture. The reaction was stirred for 90 minutes, after which the mixture was filtered and the volatile components were removed in vacuo from the filtrate giving a purple residue. The product was washed with pentane (ca. 5 mL) and dried *in vacuo*, giving { $[Pim^{Pr_2}]Co(OClO_3)$ }[ClO_4] as a bright blue-purple powder (206 mg, 84%). m/z = 642 (M⁺). IR Data (cm⁻¹), KBr pellet: 2970 (w), 2958 (w), 2933 (vw), 2871 (vw), 1554 (w), 1194 (m), 1145 (s), 1117 (s), 1090 (vs), 627 (m). ¹H NMR (CDCl₃): δ -12.9, -1.7, 6.0, 12.9, 80.0 (assignments not given due to the paramagnetic nature of the compound). {[Pim^{Prⁱ2}]Co(OH₂)(HOMe)(OClO₃)}[ClO₄] is obtained as pinkpurple crystals upon direct crystallization from the reaction solvent. ¹H NMR (CD₃OD): δ -87.5, -26.8, 14.5, 39.6, 51.9 (assignments not given due to the paramagnetic nature of the compound).

X-Ray structure determinations

Crystal data, data collection and refinement parameters are summarized in Table 2. X-Ray diffraction data were collected on a Bruker P4 diffractometer equipped with a SMART CCD detector. The structures were solved using direct methods and standard difference map techniques, and were refined by full-matrix least-squares procedures on F^2 with SHELXTL (Version 5.03).²³ Hydrogen atoms on carbon were included in calculated positions.

CCDC reference number 186/1948.

See http://www.rsc.org/suppdata/dt/b0/b002894k/ for crystallographic files in .cif format.

Conclusion

In summary, a pair of cobalt–perchlorate complexes, { $[Pim^{Pr^2}]-Co(OClO_3)$ }⁺ and { $[Pim^{Pr^2}]Co(OH_2)(HOMe)(OClO_3)$ }⁺, have been isolated as perchlorate salts and structurally characterized by X-ray diffraction. The isolation of these complexes, rather than the cobalt hydroxide counterpart of { $[Pim^{Pr^1,Bu^1}]-ZnOH$ }⁺, underscores the complexities that arise in generating accurate synthetic analogues for metal-substituted carbonic anhydrases.

Acknowledgements

We thank the National Institutes of Health (Grant GM46502) for support of this research.

References

- 1 Abbreviations: tris(2-imidazolyl)phosphines are represented by the abbreviation [Pim^{R,R'}], with the 1- and 4-alkyl substituents listed respectively as superscripts.
- 2 C. Kimblin, W. E. Allen and G. Parkin, J. Chem. Soc., Chem. Commun., 1995, 1813.
- 3 T. N. Sorrell, W. E. Allen and P. S. White, *Inorg. Chem.*, 1995, 34, 952.
- 4 R. Alsfasser, S. Trofimenko, A. Looney, G. Parkin and H. Vahrenkamp, *Inorg. Chem.*, 1991, **30**, 4098.
- 5 M. Ruf and H. Vahrenkamp, Inorg. Chem., 1996, 35, 6571.
- 6 S. Hikichi, T. Ogihara, K. Fujisawa, N. Kitajima, M. Akita and Y. Moro-oka, *Inorg. Chem.*, 1997, **36**, 4539.
- 7 J. W. Egan, Jr., B. S. Haggerty, A. L. Rheingold, S. C. Sendlinger and K. H. Theopold, *J. Am. Chem. Soc.*, 1990, **112**, 2445.
- 8 N. Kitajima, S. Hikichi, M. Tanaka and Y. Moro-oka, J. Am. Chem. Soc., 1993, 115, 5496.
- 9 The zinc complex [Tp^{Pri}]ZnOH is, however, proposed to be mononuclear (reference 8), but this proposal is yet to be confirmed by X-ray diffraction.
- 10 I. Bertini, C. Luchinat and M. S. Viezzoli, in *Zinc Enzymes*, eds. I. Bertini, C. Luchinat, W. Maret and M. Zeppezauer, *Prog. Inorg. Biochem. Biophys.*, Birkhäuser, Boston, MA, 1986, vol. 1, ch. 3.
- 11 C. Kimblin and G. Parkin, Inorg. Chem., 1996, 35, 6912.
- 12 Similar interactions have been observed previously, such as in [Co(L)(NO₃)(HOMe)][BPh₄]·2HOMe (L = cis,cis-1,3,5-tri[(4-tert-butylphenyl)propenylideneamino]cyclohexane [d(O···O) = 2.60 Å]. See: C. J. Boxwell and P. H. Walton, Chem. Commun., 1999, 1647.
- 13 Examples are also known in tris(pyrazolyl)borate chemistry where the crystallization solvent influences the nature of the product obtained. See, for example: A. Kremer-Aach, W. Kläui, R. Bell, A. Strerath, H. Wunderlich and D. Mootz, *Inorg. Chem.*, 1997, 36, 1552 and references therein.
- 14 For comparison, the Co···O(13) distance in {[Pim^{Pr'2}]Co(OH₂)-(HOMe)(OClO₃)} is 3.68 Å.
- 15 For other examples of complexes with Co–OClO₃ interactions, see: (a) L. Chen and F. A. Cotton, *Inorg. Chim. Acta*, 1997, **263**, 9. (b) C. A. L. Becker and J. C. Cooper, *Inorg. Chim. Acta*, 1991, **182**, 25.
- 16 Chemistry of The Elements, N. N. Greenwood and A. Earnshaw, Pergamon Press, New York, 1984, p. 1017.
- 17 For other examples of perchlorate coordination, see: N. M. N. Gowda, S. B. Naikar and G. K. N. Reddy, *Adv. Inorg. Chem. Radiochem.*, 1984, **28**, 255.
- 18 The Co–O bond lengths in {[Pim^{Pr},^{Bu}]Co(NO₃)}⁺ are 2.019(8) and 2.289(10) Å. C. Kimblin, V. J. Murphy and G. Parkin, *Chem. Commun.*, 1996, 235; C. Kimblin, V. J. Murphy, T. Hascall, B. M. Bridgewater, J. B. Bonanno and G. Parkin, *Inorg. Chem.*, 2000, **39**, 967.
- 19 It is worth noting that reaction of [Pim^{Pri}] with Zn(NO₃)₂·6H₂O yields a compositionally similar species, *i.e.* [Pim^{Pri}]Zn(NO₃)₂, but

both nitrate anions coordinate and the zinc center is six coordinate, $[Pim^{Pr_2}]Zn(\eta^1-ONO_2)(\eta^2-O_2NO)$. See: C. Kimblin, W. E. Allen and G. Parkin, *Main Group Chem.*, 1996, **1**, 297.

- 20 Cambridge Structural Database (Version 5.17). 3D Search and Research Using the Cambridge Structural Database, F. H. Allen and O. Kennard, Chem. Des. Automat. News, 1993, 8, 1 & 31.
- 21 (a) S. M. Nelson, F. S. Esho, M. G. B. Drew and P. Bird, J. Chem. Soc., Chem. Commun., 1979, 1035; (b) K. Andelkovic, I. Ivanovic, B. V. Prelesnik, V. M. Leovac and D. Poleti, Polyhedron, 1996, 15, 4361; (c) E. C. Constable, M. A. M. Daniels, M. G. B. Drew, D. A. Tocher, J. V. Walker and P. D. Wood, J. Chem. Soc., Dalton Trans., 1993, 1947.
- 22 J. P. McNally, V. S. Leong and N. J. Cooper, in *Experimental Organometallic Chemistry*, eds. A. L. Wayda and M. Y. Darensbourg, American Chemical Society, Washington, DC, 1987; ch. 2, pp. 6–23. B. J. Burger and J. E. Bercaw, in *Experimental Organometallic Chemistry*, eds. A. L. Wayda and M. Y. Darensbourg, American Chemical Society, Washington, DC, 1987, ch. 4, pp. 79–98. D. F. Shriver and M. A. Drezdzon, *The Manipulation of Air-Sensitive Compounds*, Wiley-Interscience, New York, 2nd edn., 1986.
- 23 G. M. Sheldrick, SHELXTL, An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data, University of Göttingen, Göttingen, Federal Republic of Germany, 1981.